Cryptography

Problem set 4 -17-18 IV 2013

Problem 1 Prove that if G, H are groups then $G \times H$ is a group.
Problem 2 Let $N=p q$ and let $\left[N, e_{1}\right],\left[N, e_{2}\right]$ be public keys of Alice and Bob respectively. Show that if Eve sends encrypted messages to Alice $c_{1}=m^{e_{1}} \bmod N$ and Bob $c_{2}=$ $m^{e_{2}} \bmod N$ and you intercept them then you can recover m from c_{1} and c_{2}. What is the success probability of your attack?.
Problem 3 Let $N=p q$ be a product of two distinct primes. Show that if $\phi(N)$ and N are known, then it is possible to compute p and q in polynomial time.
Problem 4 Let $N=p q$ be a product of two distinct primes. Show that if N and an integer d such that $3 d=1 \bmod \phi(N)$ are known, then it is possible to compute p and q in polynomial time.
Problem 5 Determine whether or not the following problem is hard. Let p be prime, and fix $x \in \mathcal{Z}_{p-1}^{*}$. Given p, x, and $y:=\left[g^{x} \bmod p\right]$ (where g is a random value between 1 and $p-1$), find g; i.e., compute $y^{1 / x} \bmod p$. If you claim the problem is hard, show a reduction (to i.e., discrete logarithm problem). If you claim the problem is easy, present an algorithm, justify its correctness, and analyze its complexity.

Problem 6 Prove formally that the hardness of the Computational Diffie-Helman (CDH) problem relative to \mathcal{G} implies the hardness of the discrete logarithm problem relative to \mathcal{G}.

