Cryptography

Problem set 4 - 17-18 IV 2013

Problem 1 Prove that if G, H are groups then $G \times H$ is a group.

- **Problem 2** Let N = pq and let $[N, e_1], [N, e_2]$ be public keys of Alice and Bob respectively. Show that if Eve sends encrypted messages to Alice $c_1 = m^{e_1} \mod N$ and Bob $c_2 = m^{e_2} \mod N$ and you intercept them then you can recover m from c_1 and c_2 . What is the success probability of your attack?
- **Problem 3** Let N = pq be a product of two distinct primes. Show that if $\phi(N)$ and N are known, then it is possible to compute p and q in polynomial time.
- **Problem 4** Let N = pq be a product of two distinct primes. Show that if N and an integer d such that $3d = 1 \mod \phi(N)$ are known, then it is possible to compute p and q in polynomial time.
- **Problem 5** Determine whether or not the following problem is hard. Let p be prime, and fix $x \in \mathbb{Z}_{p-1}^*$. Given p, x, and $y := [g^x \mod p]$ (where g is a random value between 1 and p 1), find g; *i.e.*, compute $y^{1/x} \mod p$. If you claim the problem is hard, show a reduction (to *i.e.*, discrete logarithm problem). If you claim the problem is easy, present an algorithm, justify its correctness, and analyze its complexity.
- **Problem 6** Prove formally that the hardness of the Computational Diffie-Helman (CDH) problem relative to \mathcal{G} implies the hardness of the discrete logarithm problem relative to \mathcal{G} .