Cryptography

Problem set 1

Definition 1. An encryption scheme (Gen, Enc, Dec) over a message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M}, every messsage $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$ for which $P[C=c]>0$:

$$
P[M=m \mid C=c]=P[M=m] .
$$

Definition 2. An encryption scheme (Gen, Enc, Dec) over a message space \mathcal{M} is perfectly secret if and only if for every probability distribution over \mathcal{M}, every message $m \in \mathcal{M}$, and every ciphertext $c \in \mathcal{C}$:

$$
P[C=c \mid M=m]=P[C=c]
$$

Definition 3. An encryption scheme (Gen, Enc, Dec) over a message space \mathcal{M} is perfectly secret if for every probability distribution over \mathcal{M}, every $m_{0}, m_{1} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
P\left[C=c \mid M=m_{0}\right]=P\left[C=c \mid M=m_{1}\right] .
$$

Definition 4. A function f is negligible if for every polynomial $p(\cdot)$ there exists an N such that for all integers $n>N$ it holds that $f(n)<\frac{1}{p(n)}$.

Problem 1 Prove or refute: definitions 1 and 2 are equivalent.
Problem 2 Prove or refute: definitions 2 and 3 are equivalent.
Problem 3 Prove or refute: definitions 1 and 3 are equivalent.
Problem 4 Prove or refute: For every encryption scheme that is perfectly secret it holds that for every distribution over the message space \mathcal{M}, every $m, m^{\prime} \in \mathcal{M}$, and every $c \in \mathcal{C}$:

$$
P[M=m \mid C=c]=P\left[M=m^{\prime} \mid C=c\right] .
$$

Problem 5 Consider the following definition of perfect secrecy for the encryption of two messages. An encryption scheme 〈Gen, Enc, Dec〉 over a message space \mathcal{M} is perfectly-secret for two messages if for all distributions over \mathcal{M}, all $m_{0}, m_{1} \in \mathcal{M}$, and all $c_{0}, c_{1} \in \mathcal{C}$ with $P\left(C_{0}=\right.$ $\left.c_{0} \wedge C_{1}=c_{1}\right)>0:$

$$
P\left(M_{0}=m_{0} \wedge M_{1}=m_{1} \mid C_{0}=c_{0} \wedge C_{1}=c_{1}\right)=P\left(M_{0}=m_{0} \wedge M_{1}=m_{1}\right),
$$

where m_{0} and m_{1} are sampled independently from the same distribution over \mathcal{M}.
Prove that no encryption scheme satisfies this definition (hint: take $m_{0} \neq m_{1}$ but $c_{0}=c_{1}$).
Problem 6 1. Prove that the shift cipher is perfectly secure if only a single character is encrypted.
2. Prove that One Time Pad is perfectly secure.

Problem 7 The best algorithm known today for finding the prime factors of an n-bit number runs in time $2^{c n^{\frac{1}{3}}(\log n)^{\frac{2}{3}}}$. Assuming $4 G H z$ computers and $c=1$ (and that the units of the given expression are clock cycles), estimate the size of numbers that cannot be factored for the next 100 years.

Problem 8 Let f, g be negligible functions. Show that:

1. The function $h(n)=f(n)+g(n)$ is negligible .
2. For any positive polynomial p, the function $h(n)=p(n) \cdot f(n)$ is negligible .

Problem 9 (2 points) Let $\Pi_{1}=\left\langle G e n_{1}, E n c_{1}, D e c_{1}\right\rangle, \Pi_{2}=\left\langle G e n_{2}, E n c_{2}, D e c_{2}\right\rangle$ be the two privatekey encryption schemes. Show how to construct Π - a CPA-secure private-key encryption scheme by combining schemes Π_{1} and Π_{2}. You may assume that Π_{i} is $C P A$-secure but you do not know which one.

Assuming that an adversary can win the $C P A$ experiment with an advantage ϵ_{i} for the scheme Π_{i}, evaluate adversary's advantage for the scheme Π.

