Cryptography

Problem set 2

Definition A generator $G:\{0,1\}^{n} \rightarrow\{0,1\}^{l(n)}$ is predictable if there exists an efficient (probabilistic polynomial time) algorithm \mathcal{A} and such an $i: 1<i<l(n)$ that:

$$
P\left[\mathcal{A}\left(G(x)_{1 \ldots i}\right)=G(x)_{i+1}\right]>\frac{1}{2}+\varepsilon(n)
$$

for a non-negligible function $\varepsilon(n)$.
Problem 1 Show that if G is a pseudorandom generator then G is unpredictable.
Problem 2 Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ be a pseudorandom generator. Design a computationally unbounded distinguisher \mathcal{D} which predicts next bits of G's output with non-negligible advantage.
Problem 3 Let G be a pseudorandom generator where $|G(s)|>2|s|$.

1. Define $G^{\prime}(s)=G\left(s 0^{|s|}\right)$. Is G^{\prime} necessarily a pseudorandom generator?
2. Define $G^{\prime}(s)=G\left(s_{1} \ldots s_{n / 2}\right)$, where $s=s_{1} \ldots s_{n}$. Is G^{\prime} necessarily a pseudorandom generator?

Problem 4 Let G be a pseudorandom generator and define $G^{\prime}(s)$ to be the output of G truncated to n bits (where $|s|=n$). Prove that the function $F_{k}(x)=G^{\prime}(k) \oplus x$ is not pseudorandom.
Problem 5 Let $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}$ be a pseudorandom generator. Which of the following generators are also pseudorandom?

1. $G^{\prime}(x)=G(0)$
2. $G^{\prime}(x)=G(x) \| G(x)$
3. $G^{\prime}(x)=G(x) \| 0$.
4. $G^{\prime}(x)=G(x)_{0, \ldots, n-2}\left(G^{\prime}(x)\right.$ takes as its output first $n-1$ bits of $\left.G(x)\right)$
5. $G^{\prime}(x)=G(k) \oplus 1^{n}$.

For each case: prove or refute pseudorandomnes of G^{\prime}.
Problem 6 Let G be a pseudorandom generator and define $G^{\prime}(s)=G(s)_{1 \ldots n}$ (output truncated to the first n bits) for $|s|=n$. Prove that the function $F_{k}(x)=G^{\prime}(k) \oplus x$ is not pseudorandom.

Problem 7 Let F be a pseudorandom function, and G a pseudorandom generator with expansion factor $l(n)=n+1$. For each of the following encryption schemes, state whether the scheme has indistinguishable encryptions in the presence of an eavesdropper and whether it is CPAsecure. In each case, the shared key is a random $k \in\{0,1\}^{n}$.

1. To encrypt $m \in\{0,1\}^{2 n+2}$, parse m as $m_{1}| | m_{2}$ with $\left|m_{1}\right|=\left|m_{2}\right|$ and send $\left\langle G(k) \oplus m_{1}, G(k+1) \oplus m_{2}\right\rangle$.
2. To encrypt $m \in\{0,1\}^{n+1}$, choose a random $r \leftarrow\{0,1\}^{n}$ and send $\langle r, G(r) \oplus m\rangle$.
3. To encrypt $m \in\{0,1\}^{n}$, send $m \oplus F_{k}\left(0^{n}\right)$.
4. To encrypt $m \in\{0,1\}^{2 n}$, parse m as $m_{1}| | m_{2}$ with $\left|m_{1}\right|=\left|m_{2}\right|$, then choose $r \leftarrow\{0,1\}^{n}$ at random, and send $\left\langle r, m_{1} \oplus F_{k}(r), m_{2} \oplus F_{k}(r+1)\right\rangle$.

Problem 8 Prove that ECB mode of encryption does not yield CPA-secure encryption regardles of function F.

Problem 9 Prove that CTR mode of encryption does not yield CCA-secure encryption regardles of function F.

